Сопротивление тканей - Книга вторая Дж. Эдвард Морган-мл. Мэгид С. Михаил Перевод с английского

Сопротивление тканей

Вязкоэластическое (фрикционное) сопротивление тканей газовому потоку обычно недооценивают, хотя оно может составлять половину величины об­щего сопротивления дыхательных путей. Сопро­тивление тканей — компонент неэластического со­противления.

^ 4. РАБОТА ДЫХАНИЯ

Выдох в норме полностью пассивен, поэтому об­щая работа вдоха и выдоха выполняется мышцами вдоха (главным образом диафрагмой). Для осуще­ствления движения легких и грудной клетки при дыхании необходимо преодолевать эластическое сопротивление грудной клетки и легких, неэласти­ческое сопротивление дыхательных путей газово­му потоку и сопротивление тканей.



Рис. 22-10. Кривая форсированного выдоха у здорового человека. Скорость форсированного выдоха (COB25 ?5%), также называется максимальной скоростью потока в середине выдоха (МОС25-75%)

Работу дыхания можно представить как произ­ведение объема и давления (рис. 22-11). Во время вдоха преодолевается и сопротивление дыхатель­ных путей, и легочное эластическое сопротивле­ние; около 50 % затрачиваемой на это энергии накапливается в упругих структурах легких. Во время выдоха накопленная потенциальная энергия высвобождается, что позволяет преодо­леть сопротивление дыхательных путей. Увеличе­ние сопротивления вдоху или выдоху компенси­руется дополнительным усилием мышц вдоха. При возрастании сопротивления выдоху физио­логическая компенсаторная реакция заключается в увеличении объема легких, вследствие чего ды­хательный объем остается неизменным, тогда ФОБ увеличивается. Избыток энергии, накоплен­ный в упругих структурах благодаря увеличению ФОБ, идет на преодоление повышенного сопро­тивления выдоху. Кроме того, при значительном повышенном сопротивлении выдоху начинают работать мышцы выдоха.

На работу дыхательной мускулатуры в норме приходится всего 2-3 % потребляемого организмом кислорода, но коэффициент полезного действия при этом составляет только 10 %. А 90 % энергии рассеивается в виде тепла (из-за эластического со-



Рис. 22-11. Работа дыхания во время вдоха и ее состав­ляющие. (С разрешения. Из: Guyton A. С. Textbook of Medical Physiology, 7th ed. Saunders, 1986.)

противления и сопротивления воздушному пото­ку). В патологических условиях, когда возрастает нагрузка на диафрагму, эффективность работы ды­хания прогрессивно снижается и мышечные сокра­щения могут становиться дискоординированными; более того, с некоторого момента весь дополнитель­ный кислород, получаемый за счет увеличения вен­тиляции, идет на покрытие соответствующего при­роста работы дыхательных мышц.

Работа, требуемая для преодоления эластичес­кого сопротивления, возрастает по мере увеличе­ния дыхательного объема. Работа, необходимая для преодоления сопротивления дыхателъных путей, возрастает при увеличении частоты дыхания (Увеличение частоты дыхания неизбежно влечет за собой увеличение потока на выдохе.). Пациент стремится уменьшить работу дыхания, изменяя в зависимости от ситуации частоту дыхания и ды­хательный объем (рис. 22-12). Для больных со сни­женной растяжимостью легких характерно частое и поверхностное дыхание, тогда как при увеличен­ном сопротивлении дыхательных путей наблюда­ется, наоборот, медленное и глубокое дыхание.

^ 5. ВЛИЯНИЕ АНЕСТЕЗИИ НА МЕХАНИКУ ДЫХАНИЯ

Влияние анестезии на легочные объемы и растяжимость

Помимо снижения ФОБ вследствие перемещения из вертикального в горизонтальное положение, ин­дукция анестезии приводит к дополнительному снижению ФОЕна 15-20 % (в среднем на 400мл).

Из-за утраты мышечного тонуса диафрагма в конце выдоха оттесняется органами брюшной полости значительно краниальнее, чем в нормаль­ных условиях (рис. 22-13). Более высокое поло­жение диафрагмы снижает объем легких, а также растяжимость легких pi грудной клетки. Это уменьшение ФОБ не зависит от глубины анесте­зии и может сохраняться в течение нескольких часов после ее окончания. При чрезмерном опуска­нии головной части тела (положение Тренделен-бурга, наклон более 30°) происходит дальнейшее снижение ФОБ, обусловленное возрастанием внутригрудного объема крови. Индукция анесте­зии у пациента в положении сидя, напротив, не оказывает значительного эффекта на ФОБ. Введе­ние миорелаксантов не влияет на ФОБ у пациента, находящегося в состоянии анестезии.

Воздействие анестезии на емкость закрытия менее определенно. Под влиянием анестезии ФОБ и емкость закрытия обычно уменьшаются в равной степени. Таким образом, факторы риска повышен-

кого внутрилегочного шунтирования в условиях анестезии те же, что и в состоянии бодрствова­ния: к ним прежде всего относят пожилой возраст пациента, ожирение и сопутствующие заболева­ния легких.

^ Влияние анестезии на сопротивление дыхательных путей

Можно было бы ожидать, что снижение ФОБ, вызванное анестезией, приводит к увеличению со­противления дыхательных путей. Однако этого, как правило, не происходит, потому что широко применяемые для поддержания анестезии ингаля­ционные анестетики обладают бронходилатирую-щими свойствами. Повышение сопротивления ды­хательных путей чаще обусловлено западением языка, ларингоспазмом, бронхоконстрикцией, об­струкцией (бронхиальным секретом, кровью, опу­холью) или техническими проблемами (недоста­точно большой размер интубационной трубки или коннектора, неисправность клапанов наркозного аппарата, обструкция дыхательного контура).

^ Влияние анестезии на работу дыхания

Возрастание работы дыхания при общей анестезии чаще всего объясняется снижением растяжимости легких и грудной клетки и, реже, повышением со­противления дыхательных путей. Проблемы, свя­занные с увеличением работы дыхания, решаются с помощью ИВЛ.

^ Вентиляционно-перфузионные отношения

1. ВЕНТИЛЯЦИЯ

Вентиляция обычно измеряется как суммарный объем выдоха за минуту (минутная вентиляция, или минутный объем дыхания — Vmin, МОД). При постоянном дыхательном объеме:

Минутный объем дыхания =

= Частота дыхания х Дыхательный объем.

У взрослого человека в состоянии покоя МОД ра­вен в среднем 5 л/мин.

Не вся газовая смесь, поступившая в легкие во время вдоха, достигает альвеол; некоторое ее коли­чество остается в дыхательных путях и выдыхает­ся, не подвергаясь обмену с альвеолярным газом. Эта часть дыхательного объема (V7), не принима­ющая участия в газообмене, называется мертвым пространством (V0). Альвеолярная вентиляция (VA) — это та часть газа, поступающего в легкие за одну минуту, которая действительно принимает участие в газообмене.

VA = 4flx (V1-V0).

Мертвое пространство включает объем дыха­тельных путей, в которых не происходит газооб­мен (анатомическое мертвое пространство), и объем неперфузируемых альвеол (альвеолярное мертвое пространство). Сумма анатомического и альвеолярного мертвого пространства называет-



Рис. 22-12. Зависимость работы дыхания от частоты дыхания у здорового человека, у пациента с повышенным эласти­ческим сопротивлением и у пациента с повышенным сопротивлением дыхательных путей. (С разрешения. Из: Nunn J. F. Applied Respiratory Physiology, 3rd ed. Butterworths, 1987.)








ся физиологическим мертвым пространством.

В норме у взрослого человека при вертикальном положении тела мертвое пространство равно 150 мл (примерно 2 мл/кг) и практически состоит только из анатомического мертвого пространства. Вес человека в фунтах приблизительно соответ-

Самостоятельное дыхание во время бодрствования

Самостоятельное дыхание в условиях анестезии

ствует объему мертвого пространства в милли­литрах (1 фунт — 453 г.— ^ Примеч. пер.). Объем мертвого пространства может изменяться под влиянием многих факторов (табл. 22-3).

Дыхательный объем у взрослых в среднем ра­вен 450 мл (6 мл/кг), а отношение VD/VT в норме — 33 %. Эта величина может быть подсчитана по уравнению Бора:

VD/VT - (PACO2- РЕС02)/РдС02,

где РлСО2 — альвеолярное напряжение углекислого газа, a PnCO2 — напряжение углекислого газа в сме­шанном выдыхаемом воздухе. Это уравнение при­менимо в клинике, если вместо РлСО2 использовать напряжение углекислого газа в артериальной крови (PaCO2), так как они приблизительно равны между собой, а в качестве PeCO2 — среднюю величину PcCO2, измеренную в течение нескольких минут.

^ Регионарные различия вентиляции в легких

Вне зависимости от положения тела альвеолярная вентиляция в легких происходит неравномерно. Правое легкое вентилируется лучше, чем левое (53 и 47 % соответственно), и нижерасположенные зоны обоихлегких вентилируются лучше, чем вышераспо­ложенные, так как в результате действия силы тя­жести создается градиент внутриплевралъного (и, соответственно, транспулъмоналъного) давления. Внутриплевральное давление возрастает (стано­вится менее отрицательным) на 1 см вод. ст. сверху вниз на каждые 3 см протяженности легких. В ре­зультате альвеолы из различных зон оказываются в разных точках кривой легочной растяжимости



ИВЛ на фоне действия миорелаксантов

Рис. 22-13. Положение диафрагмы в конце выдоха (пре­рывистая линия) при самостоятельном дыхании во вре­мя бодрствования, при самостоятельном дыхании в ус­ловиях анестезии и при ИВЛ на фоне действия миоре­лаксантов. Заштрихованная зона показывает экскурсию диафрагмы. (С разрешения. Из: Froese A. В., Bryan A. С. Effects of anesthesia and paralysis on diaphragmatic mecha­nics in man. Anesthesiology, 1974; 41: 242.)

^ ТАБЛИЦА 22-3. Факторы, влияющие на величину мертвого пространства

Фактор


Эффект


Положение тела





Вертикальное


t


Лежа на спине


I


Состояние дыхательных путей





Шея разогнута


t


Шея согнута


i


Пожилой возраст


t


Установка воздуховода


1


ИВЛ


t


Лекарственные препараты





Холиноблокаторы


t


Легочный кровоток





Эмболия легочной артерии


t


Артериальная гипотония


t


Заболевания легких


t


(рис. 22-14). Альвеолы в верхних отделах легких из-за более высокого транспульмонального давле­ния расправлены почти максимально, относитель­но нерастяжимы и значительно меньше увеличи­ваются в объеме во время вдоха. И наоборот, альвеолы в нижних отделах легких благодаря более низкому транспульмональному давлению более ра­стяжимы и больше увеличиваются во время вдоха. Сопротивление дыхательных путей также спо­собствует возникновению регионарных различий в легочной вентиляции. Конечный альвеолярный объем при вдохе определяется исключительно рас­тяжимостью только в том гипотетическом случае, если время вдоха не ограничено. В действительно­сти же время вдоха лимитировано частотой дыха­ния и временем, необходимым для выдоха; следо­вательно, слишком короткое время вдоха не позволит альвеолам достичь ожидаемого объема. Кроме того, заполнение альвеол воздухом проис­ходит по экспоненте, которая зависит как от растя­жимости, так и от сопротивления дыхательных путей. Поэтому даже при нормальной продолжи­тельности вдоха изменения растяжимости или со­противления могут препятствовать полному рас­правлению альвеол.

^ Постоянные времени

Расправление легких во время вдоха можно опи­сать математически с использованием постоянной времени, т.

т = Общая растяжимость х

х Сопротивление дыхательных путей.

^ Время, соответствующее 1 г — это время, необхо­димое для расправления альвеолы на 63 % от мак­симального объема. Расправление на 99 % требует времени, равного 4 т.

Регионарные различия в сопротивлении или растяжимости не только влияют на расправление альвеол, но могут стать причиной асинхронного заполнения альвеол во время вдоха; некоторые альвеолы продолжают заполняться и тогда, когда из других альвеол газ уже начал выходить.

Если человек, не имеющий патологии органов дыхания, будет дышать с максимальной частотой, постоянные времени в регионах его легких изме­нятся. При частом поверхностном дыхании верх­ние отделы легких начинают вентилироваться лучше нижних.

^ 2. ЛЕГОЧНЫЙ KPOBOTOK

Из 5 л крови, протекающих через легкие за 1 мин, в легочных капиллярах одномоментно находятся и участвует в газообмене только 70-100 мл. Этот небольшой объем крови образует на альвеоло-ка-пиллярной мембране пленку площадью 50-100 м2 и толщиной в один эритроцит. Кроме того, для обеспечения полноценного газообмена каждый ка­пилляр контактирует не с одной, а с несколькими альвеолами.



Рис. 22-14. Влияние силы тяжести на растяжимость альвеол при вертикальном положении человека

Емкость капилляров легких относительно по­стоянна, но общий внутрилегочный объем крови может изменяться от 500 до 1000 мл. Значительное увеличение сердечного выброса или объема цирку­лирующей крови хорошо переносится и не сопро­вождается большими колебаниями давления благо­даря пассивной дилатации уже открытых сосудов и, возможно, дополнительному подключению сосу­дов, до этого находившихся в спавшемся состоянии. Внутрилегочный объем крови незначительно уве­личивается при каждом вдохе (при самостоятель­ном дыхании) и во время сердечной систолы. Пере­ход из горизонтального в вертикальное положение сопровождается уменьшением внутрилегочного объема крови (оно может достигать 27 %); положе­ние Тренделенбурга оказывает противоположный эффект. Изменение емкости сосудистого русла в большом круге кровообращения также влияет на объем крови в легких: сужение периферических вен приводит к смещению крови из большого круга в малый, а при их расширении происходит обратное перераспределение. Таким образом, легкие играют роль резервуара для системного кровообращения.

В регуляции легочного сосудистого тонуса мест­ные факторы более значимы, чем вегетативная нервная система. ^ Гипоксия —мощный стимул легоч­ной вазоконстрикции (в противоположность сосудо­расширяющему действию гипоксии в большом круге кровообращения). Вазоконстрикция происходит как при гипоксии в легочной артерии (в смешанной ве­нозной крови), так и при альвеолярной гипоксии, однако стимулирующий эффект последней более выражен. Этот феномен возникает либо благодаря

прямому действию гипоксии на легочные сосуды, либо за счет преобладания выработки сосудосужи­вающих лейкотриенов над продукцией сосудорас­ширяющих простагландинов. Возможно, гипоксия подавляет образование оксида азота (NO). Легоч­ная гипоксическая вазоконстрикция — важнейший физиологический механизм, уменьшающий внут-рилегочное шунтирование и предотвращающий ги­поксемию. Гипероксия не оказывает существенного влияния на легочное кровообращение у здоровых людей. Гиперкапния и ацидоз вызывают легочную вазоконстрикцию, а гипокапния — вазодилатацию.

^ Распределение легочного кровотока

Легочный кровоток так же неравномерен, как и вен­тиляция. Независимо от положения тела, в нижерас­положенные отделы легких поступает больше крови, чем в вышерасположенные. В результате действия силы тяжести создается градиент внутрисосудстого давления, составляющий 1 см вод. ст. на каждый сан­тиметр высоты легкого. Давление в малом круге кро­вообращения низкое (гл. 19), поэтому сила тяжести имеет значительное влияние на легочный кровоток. Каждое легкое условно можно разделить на три зоны — в зависимости от соотношения альвео­лярного (РА), артериального (Pa) и венозного (Pv) давлений (рис. 22-15). Зона 1 — это верхняя зона, представляющая собой альвеолярное мертвое про­странство, потому что здесь давление в альвеолах сжимает легочные капилляры и кровоток отсутству­ет. В средней зоне (зона 2) легочный капиллярный кровоток имеет прерывистый характер, зависящий



Рис. 22-15. Модель, демонстрирующая неравномерность распределения легочного кровотока в трех зонах легкого

от артериально-альвеолярного градиента давления. В зоне 3 легочный капиллярный кровоток непреры­вен и определяется артериально-венозным градиен­том давления.

^ Вентиляционно-перфузионные отношения

В норме альвеолярная вентиляция (V) составляет

4 л/мин, легочный капиллярный кровоток (Q) —

5 л/мин, а их соотношение V/Q, которое называют вентиляционно-перифузионным соотношением, соответственно 0,8. Для отдельной легочной единицы (комплекс "альвеола-капилляр") У/сможет варьиро­ваться от О (отсутствие вентиляции) до бесконеч­ности (отсутствие кровотока); первое состояние представляет собой внутрилегочный шунт, вто­рое — альвеолярное мертвое пространство. В от­дельных легочных единицах V/Q варьируется от 0,3 до 3,0, но в большинстве случаев близко к 1,0 (рис. 22-17А). И кровоток, и вентиляция возраста­ют от верхушек легких к основаниям, но кровоток — в большей ^степени, поэтому в апикальных отделах легких V/QBbiiue, чем в базальных (рис. 22-17Б).

Соотношение V/Q в различных зонах легкого определяют эффективность оксигенации венозной

KpOBPi и удаления из нее углекислого газа. Кровь, оттекающая от участков легких с малой величиной V/Q, характеризуется низким парциальным дав-лением кислорода и высоким парциальным давле­нием углекислого газа; и по газовому составу она напоминает смешанную венозную кровь. Поступ­ление такой крови в системный кровоток вызывает снижение PaO2 и повышение PaCO2. Этот эффект гораздо сильнее выражен для PaO2, чем для PaCO2; очень часто PaCO2 даже снижается из-за рефлекторного увеличения вентиляции, обуслов­ленного гипоксией. К сожалению, компенсатор­ный рост вентиляции не приводит к существенному улучшению оксигенации в участках с нормальны­ми величинами V/Q, потому что оттекающая отту­да кровь конечных легочных капилляров уже мак­симально насыщена кислородом.

3. ШУНТЫ

В физиологии дыхания под шунтированием пони­мают возврат десатурированной смешанной веноз­ной крови из правых отделов сердца в левые без на­сыщения кислородом в легких (рис. 22-16). Этот тип шунта обозначают как шунт "справа-налево"; он



Рис. 22-16. Модель газообмена в легких, демонстрирующая вентиляцию мертвого пространства, нормальный альвео-лярно-капиллярный газообмен и шунты (примесь венозной крови). (С разрешения. Из: Nunn J. F. Applied Respiratory Physiology, 3rd ed. Butterworths, 1987.)

приводит к снижению ("разбавлению") содержа­ния кислорода в артериальной крови. Существуют и шунты "слева-направо", которые в отсутствие за­стоя в легких не вызывают гипоксемию. Внутриле-гочные шунты часто подразделяют на абсолютные и относительные. Под
9085776926938754.html
9085942306095554.html
9086063092668613.html
9086186449862958.html
9086290229080336.html